
MATH 210. APPLIED MATHEMATICS FOR ENGINEERS

Discrete Functions, Euler’s Method, 1st Order DE

1 DISCRETE FUNCTIONS

Discretize the following functions f (t) over the interval I with step size h. Answers must be vectors of numbers.

(a) f (t) = 2t +1, I = [−1,3], h = 1 (d) f (t) = cos(t), I = [0,π], h = π/3

(b) f (t) = t 2, I = [−1,0], h = 1/4 (e) f (t) = δ(t), I = [−1,1], h = 1/2

(c) f (t) = sin(t), I = [0,π], h = π/4 (f) f (t) = δ(t − 1/2), I = [−1,1], h = 1/2

2 EULER’S METHOD

I. Use Euler’s Method to solve the following initial value problems over the interval I = [−2,2] with
(i) step size h = 2 (ii) step size h = 1.

(a) y ′ = 2t with y(−2) = 0.

(b) y ′ = 2t +1 with y(−2) = 2.

(b’) y ′ = 2t +1 with y(2) = 6. (Backwards Euler)

(c) y ′ = 2y

t +3
with y(−2) = 1.

(d) y ′ = 3(t +3)+ y

t +3
with y(−2) =−6.

II. Compare your answers above to the discretization of their continuous solutions on I = [−2,2].

(a) y = t 2 −4

(b) y = t 2 + t

(c) y = (t +3)2

(d) y = 3t (t +3)

3 DISCRETE DIFFERENTIAL EQUATIONS (1ST ORDER)

I. Convert the following differential equations to point-wise discrete formulas (using yn and tn , but no y ′
n).

II. Convert your point-wise formulas to matrix equations of the form Ay = f solving over the indicated interval
with the indicated initial values and step-size.

(a) y ′ = 4t +1, y(1) = 0, I = [1,2], h = 1/2 (d) y ′+ t y = 4t , y(0) = 0, I = [0,1], h = 1/3

(b) y ′ = 4t +1, y(2) = 0, I = [1,2], h = 1/2 (e) y ′+ y = δ(t), y(−2) = 2, I = [−2,2], h = 1

(c) y ′+ y = 2, y(0) = 1, I = [0,1], h = 1/3 (f) y ′+δ(t)y = 0, y(−1) = 1, I = [−1,1], h = 1/2

4 THE DISCRETE IMPULSE BASIS

Write the following discrete functions as sums of impulses.

(a) f =

1
0
−1
0
1

 with h = 1
2 . (b) f =

1
2
3
4
5

 with h = 1
3 . (c) f =

−3
2
0
0
2

 with h = 1
4 .

Notation: Use δ(k) for the impulse at position k with step-size h. For example δ(2) =

0

1/h

0
...

5 MATLAB

• In MatLab, for loops repeat a group of commands a fixed number of times, each time using the next value
for the index variable. The format for this command is

for (<index var> = <vector>) end
For example the code

1 >> y = 0
2 >> for (i = [1 3 5 7 9])
3 y = y + i
4 end

will repeat the MatLab command “y = y + i” five times, first with i=1, then with i=3, etc. After the final
repetition, with i=9, it will stop. (This code computes the sum of the odd integers from 1 to 9.) Usually this
is combined with the <start>:<step>:<end> command which creates vectors. For example

5 >> 1 : 2 : 9

makes the vector [1 3 5 7 9]. If the <step> part is not included, then MatLab assumes you want to use
step-size 1. For example

6 >> 1 : 9

makes the vector [1 2 3 4 5 6 7 8 9].

• We can use a for loop to apply Euler’s method solving y ′ = t 2 y + t , y(0) = 2, on I = [0,10] with h = 0.1.

7 >> y = 2 ; % set the f i r s t value , y (0) =2
8 >> for (t = 0 : 0.1 : 10) % from t =0 to t =10 with step−s i z e h=0.1
9 dy = t ^2 * y (end) + t ; % | slope at current t value

10 y = [y , (y (end) + 0.1 * dy)] ; % | compute next value and append to y
11 end % | _______

The code above results in a vector y of values [y(0), y(0.1),, y(10), y(10.1)]. The command
y(end) in the code above is used to get the last value in the vector y. The command y = [y ...] is
used to add a new element after the end of y.

Actually, this is bad MatLab code. The <vector> = [<itself> ...] command is slow for big vectors (i.e.
size > 1 million) so you should not use it in loops where it is run over and over. It is usually faster to instead
begin by creating a vector of the correct size before running the loop.

12 >> t = 0 : 0.1 : 10; % vector of sample points
13 >> y = zeros (1 , length (t)) ; % zero vector of correct s i z e
14 >> y (1) = 2 ; % set the f i r s t value
15 >> for (i = 1 : length (y)−1) % loop through index of y
16 dy = t (i) ^2 * y (i) + t (i) ; % | slope at current t value
17 y (i +1) = y (i) + 0.1 * dy ; % | compute next value of y
18 end % | _______

• We can also apply Euler’s method using a while loop. While loops are more powerful than for loops, but
also more dangerous, because you can create infinite loops using while. Consider the following code.

19 >> y = 2 ; t = 0 ;
20 >> while (t < 10)
21 y = y + 0.1 * t ^2
22 end

Since t will always be < 10, MatLab will keep computing in this loop forever, or until you stop it.

IMPORTANT: Press <Ctrl>+C to break MatLab out of infinite loops or long computations.

We can use a while loop to find y(10) for y ′ = t 2 y + t , y(0) = 2 with h = 0.1.

23 >> t = 0 ; y = 2 ; % s t a r t i n g value : y (0) =2
24 >> while (t < 10) % loop u n t i l y (10)
25 dy = t ^2 * y + t ; % | slope at current t value
26 y = y + 0.1 * dy ; % | compute next value of y
27 t = t + 0 . 1 ; % | compute next value of t
28 end % | _______

