Discrete Functions, Euler's Method, 1st Order DE

1 DISCRETE FUNCTIONS

Discretize the following functions f(t) over the interval *I* with step size *h*. Answers must be vectors of numbers.

(a) $f(t) = 2t + 1$,	I = [-1, 3],	h = 1	$(\mathbf{d}) f(t) = \cos(t),$	$I = [0, \pi],$	$h = \pi/3$
(b) $f(t) = t^2$,	I = [-1, 0],	h = 1/4	$(\mathbf{e}) f(t) = \delta(t),$	I = [-1, 1],	h = 1/2
(c) $f(t) = \sin(t)$,	$I=[0,\pi],$	$h = \pi/4$	(f) $f(t) = \delta(t - 1/2)$,	I = [-1, 1],	h = 1/2

2 EULER'S METHOD

I. Use Euler's Method to s	olve the following initial value problems over the interval $I = [-2, 2]$ with
(i) step size <i>h</i> = 2	(ii) step size $h = 1$.

- (a) y' = 2t with y(-2) = 0. (b) y' = 2t + 1 with y(-2) = 2. (c) $y' = \frac{2}{t}$
- **(b')** y' = 2t + 1 with y(2) = 6. (Backwards Euler)

(c)
$$y' = \frac{2y}{t+3}$$
 with $y(-2) = 1$.

(d)
$$y' = 3(t+3) + \frac{y}{t+3}$$
 with $y(-2) = -6$.

II. Compare your answers above to the discretization of their continuous solutions on I = [-2, 2].

(a) $y = t^2 - 4$ (b) $y = t^2 + t$ (c) $y = (t+3)^2$ (d) y = 3t(t+3)

3 DISCRETE DIFFERENTIAL EQUATIONS (1ST ORDER)

I. Convert the following differential equations to point-wise discrete formulas (using y_n and t_n , but no y'_n). **II.** Convert your point-wise formulas to matrix equations of the form $A\mathbf{y} = \mathbf{f}$ solving over the indicated interval with the indicated initial values and step-size.

(a) $y' = 4t + 1$,	y(1) = 0,	I = [1, 2],	h = 1/2	(d) $y' + ty = 4t$,	y(0)=0,	I = [0, 1],	$h = \frac{1}{3}$
(b) $y' = 4t + 1$,	y(2) = 0,	I = [1, 2],	h = 1/2	$(\mathbf{e}) y' + y = \delta(t),$	y(-2) = 2,	I = [-2, 2],	h = 1
(c) $y' + y = 2$,	y(0) = 1,	I=[0,1],	h = 1/3	$(\mathbf{f}) \ y' + \delta(t) \ y = 0,$	y(-1) = 1,	I=[-1,1],	h = 1/2

4 The Discrete Impulse Basis

Write the following discrete functions as sums of impulses.

(a)
$$\mathbf{f} = \begin{bmatrix} 1\\0\\-1\\0\\1 \end{bmatrix}$$
 with $h = \frac{1}{2}$.
(b) $\mathbf{f} = \begin{bmatrix} 1\\2\\3\\4\\5 \end{bmatrix}$ with $h = \frac{1}{3}$.
(c) $\mathbf{f} = \begin{bmatrix} -3\\2\\0\\0\\2 \end{bmatrix}$ with $h = \frac{1}{4}$.
Notation: Use $\boldsymbol{\delta}^{(k)}$ for the impulse at position k with step-size h . For example $\boldsymbol{\delta}^{(2)} = \begin{bmatrix} 0\\1/h\\0\\\vdots \end{bmatrix}$

5 Matlab

• In MatLab, for loops repeat a group of commands a fixed number of times, each time using the next value for the *index variable*. The format for this command is

```
for (<index var> = <vector>) ....
   For example the code
  >> y = 0
1
  >> for (i = [1 \ 3 \ 5 \ 7 \ 9])
2
        y = y + i
3
      end
4
  will repeat the MatLab command "y = y + i" five times, first with i=1, then with i=3, etc. After the final
   repetition, with i=9, it will stop. (This code computes the sum of the odd integers from 1 to 9.) Usually this
   is combined with the <start>:<step>:<end> command which creates vectors. For example
 >> 1 : 2 : 9
5
   makes the vector [1 3 5 7 9]. If the <step> part is not included, then MatLab assumes you want to use
   step-size 1. For example
 >> 1 : 9
   makes the vector [1 2 3 4 5 6 7 8 9].
• We can use a for loop to apply Euler's method solving y' = t^2 y + t, y(0) = 2, on I = [0, 10] with h = 0.1.
                                                % set the first value, y(0)=2
   >> v = 2;
7
  >> for (t = 0 : 0.1 : 10)
                                                %
                                                    from t=0 to t=10 with step-size h=0.1
8
        dy = t^2 * y(end) + t;
                                                        slope at current t value
                                                %
9
                                                %
                                                        compute next value and append to y
        y = [y, (y(end) + 0.1 * dy)];
10
```

The code above results in a vector y of values $[y(0), y(0.1), \ldots, y(10), y(10.1)]$. The command y(end) in the code above is used to get the last value in the vector y. The command $y = [y \ldots]$ is used to add a new element after the end of y.

%

Actually, this is **bad** MatLab code. The <vector> = [<itself> ...] command is slow for big vectors (i.e. size > 1 million) so you should not use it in loops where it is run over and over. It is usually faster to instead begin by creating a vector of the correct size before running the loop.

12	>> $t = 0 : 0.1 : 10;$	% vector of sample points	
13	>> $y = zeros(1, length(t));$	% zero vector of correct size	
14	>> $y(1) = 2;$	% set the first value	
15	>> for $(i = 1 : length(y)-1)$	% loop through index of y	
16	dy = $t(i)^2 * y(i) + t(i);$	% slope at current t value	
17	y(i+1) = y(i) + 0.1 * dy;	% compute next value of y	
18	end	%	

• We can also apply Euler's method using a while loop. While loops are more powerful than for loops, but also more dangerous, because you can create infinite loops using while. Consider the following code.

```
\begin{array}{ll} & >> \ y = 2; & t = 0; \\ & >> \ while \ (t < 10 \ ) \\ & y = \ y + \ 0.1 \ * \ t^2 \\ & end \end{array}
```

end

11

Since t will always be < 10, MatLab will keep computing in this loop forever, or until you stop it.

IMPORTANT: Press <Ctrl>+C to break MatLab out of infinite loops or long computations.

We can use a while loop to find y(10) for $y' = t^2y + t$, y(0) = 2 with h = 0.1.

23	>> $t = 0;$ $y = 2;$	%	starting value: y(0)=2
24	>> while (t < 10)	%	loop until y(10)
25	$dy = t^2 * y + t;$	%	slope at current t value
26	y = y + 0.1 * dy;	%	compute next value of y
27	t = t + 0.1;	%	compute next value of t
28	end	%	