# Discrete Functions, Euler's Method, 1st Order DE 

## 1 Discrete Functions

Discretize the following functions $f(t)$ over the interval $I$ with step size $h$. Answers must be vectors of numbers.
(a) $f(t)=2 t+1, \quad I=[-1,3], \quad h=1$
(d) $f(t)=\cos (t), \quad I=[0, \pi], \quad h=\pi / 3$
(b) $f(t)=t^{2}$,
$I=[-1,0], \quad h=1 / 4$
(e) $f(t)=\delta(t)$,
$I=[-1,1], \quad h=1 / 2$
(c) $f(t)=\sin (t), \quad I=[0, \pi], \quad h=\pi / 4$
(f) $f(t)=\delta(t-1 / 2), \quad I=[-1,1], \quad h=1 / 2$

## 2 Euler's Method

I. Use Euler's Method to solve the following initial value problems over the interval $I=[-2,2]$ with
(i) step size $h=2$
(ii) step size $h=1$.
(a) $y^{\prime}=2 t$ with $y(-2)=0$.
(c) $y^{\prime}=\frac{2 y}{t+3}$ with $y(-2)=1$.
(b) $y^{\prime}=2 t+1$ with $y(-2)=2$.
(b) $y^{\prime}=2 t+1$ with $y(2)=6$. (Backwards Euler)
(d) $y^{\prime}=3(t+3)+\frac{y}{t+3}$ with $y(-2)=-6$.
II. Compare your answers above to the discretization of their continuous solutions on $I=[-2,2]$.
(a) $y=t^{2}-4$
(c) $y=(t+3)^{2}$
(b) $y=t^{2}+t$
(d) $y=3 t(t+3)$

## 3 Discrete Differential Equations (1st Order)

I. Convert the following differential equations to point-wise discrete formulas (using $y_{n}$ and $t_{n}$, but no $y_{n}^{\prime}$ ).
II. Convert your point-wise formulas to matrix equations of the form $\mathrm{A} \mathbf{y}=\mathbf{f}$ solving over the indicated interval with the indicated initial values and step-size.
(a) $y^{\prime}=4 t+1, \quad y(1)=0, \quad I=[1,2], \quad h=1 / 2$
(d) $y^{\prime}+t y=4 t, \quad y(0)=0, \quad I=[0,1], \quad h=1 / 3$
(b) $y^{\prime}=4 t+1, \quad y(2)=0, \quad I=[1,2], \quad h=\frac{1}{2}$
(e) $y^{\prime}+y=\delta(t), \quad y(-2)=2, \quad I=[-2,2], \quad h=1$
(c) $y^{\prime}+y=2, \quad y(0)=1, \quad I=[0,1], \quad h=1 / 3$
(f) $y^{\prime}+\delta(t) y=0, \quad y(-1)=1, \quad I=[-1,1], \quad h=\frac{1}{2}$

## 4 The Discrete Impulse Basis

Write the following discrete functions as sums of impulses.
(a) $\mathbf{f}=\left[\begin{array}{c}1 \\ 0 \\ -1 \\ 0 \\ 1\end{array}\right]$ with $h=\frac{1}{2}$.
(b) $\mathbf{f}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ 5\end{array}\right]$ with $h=\frac{1}{3}$.
(c) $\mathbf{f}=\left[\begin{array}{c}-3 \\ 2 \\ 0 \\ 0 \\ 2\end{array}\right]$ with $h=\frac{1}{4}$.

Notation: Use $\boldsymbol{\delta}^{(k)}$ for the impulse at position $k$ with step-size $h$. For example $\boldsymbol{\delta}^{(2)}=\left[\begin{array}{c}0 \\ 1 / h \\ 0 \\ \vdots\end{array}\right]$

## 5 MatLab

- In MatLab, for loops repeat a group of commands a fixed number of times, each time using the next value for the index variable. The format for this command is

```
for (<index var> = <vector>) .... end
```

For example the code

```
>> y = 0
```



```
    y = y + i
    end
```

will repeat the MatLab command " $y=y+i$ " five times, first with $i=1$, then with $i=3$, etc. After the final repetition, with $\mathrm{i}=9$, it will stop. (This code computes the sum of the odd integers from 1 to 9 .) Usually this is combined with the <start>:<step>:<end> command which creates vectors. For example

```
>> 1 : 2 : 9
```

makes the vector $\left[\begin{array}{llll}1 & 3 & 5 & 7\end{array}\right]$. If the <step> part is not included, then MatLab assumes you want to use step-size 1. For example

```
>> 1 : 9
```

makes the vector $\left[\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}\right]$.

- We can use a for loop to apply Euler's method solving $y^{\prime}=t^{2} y+t, y(0)=2$, on $I=[0,10]$ with $h=0.1$.

```
>> y = 2; % set the first value, y(0)=2
>> for ( t = 0 : 0.1 : 10 ) % from t=0 to t=10 with step-size h=0.1
        dy = t^2 * y(end) + t; % | slope at current t value
        y = [ y, (y(end) + 0.1 * dy) ]; % | compute next value and append to y
    end
% |_______
```

The code above results in a vector y of values $[\mathrm{y}(0), \mathrm{y}(0.1), \ldots, y(10), \mathrm{y}(10.1)]$. The command y (end) in the code above is used to get the last value in the vector y . The command $\mathrm{y}=[\mathrm{y} \ldots$ ] is used to add a new element after the end of $y$.
Actually, this is bad MatLab code. The <vector> = [<itself> ...] command is slow for big vectors (i.e. size > 1 million) so you should not use it in loops where it is run over and over. It is usually faster to instead begin by creating a vector of the correct size before running the loop.

```
>> t = 0 : 0.1 : 10;
>> y = zeros(1, length(t));
>> y(1) = 2;
for ( i = 1 : length(y)-1 )
        dy = t(i)^2 * y(i) + t(i);
        y(i+1) = y(i) + 0.1 * dy;
    end
```

- We can also apply Euler's method using a while loop. While loops are more powerful than for loops, but also more dangerous, because you can create infinite loops using while. Consider the following code.

```
>> y = 2; t = 0;
>> while (t < 10 )
        y = y + 0.1 * t^2
    end
```

Since $t$ will always be < 10, MatLab will keep computing in this loop forever, or until you stop it.
IMPORTANT: Press <Ctrl>+C to break MatLab out of infinite loops or long computations.
We can use a while loop to find $y(10)$ for $y^{\prime}=t^{2} y+t, y(0)=2$ with $h=0.1$.

```
>> t = 0; y = 2;
starting value: y(0)=2
>> while ( t < 10 ) % loop until y(10)
    dy = t^2 * y + t; % | slope at current t value
    y = y + 0.1 * dy; % | compute next value of y
    t = t + 0.1; % | compute next value of t
    end
```

